
ОБЩИЕ ПРИНЦИПЫ АНТИМИКРОБНОЙ ХИМИОТЕРАПИИ, ОСНОВНЫЕ ПОНЯТИЯ И ТЕРМИНЫ

история открытия антибиотиков

Пенициллин – величайшее мировое открытие

- 1928 г. открытие пенициллина (госпиталь Св. Марии, Лондон)
- 1929 г. публикация исследований в British J. Experimental Pathology
- Использование грибка Penicillium notatum

СМЕРТНОСТЬ ПРИ НЕКОТОРЫХ ВИДАХ ИНФЕКЦИЙ В РОССИИ

	На 100 тыс. населения			
	До АМП 1901 г.	Эра АМП 1994 г.		
Туберкулез	300	7,9		
Дифтерия	64	1,6		
Брюшной тиф	94	1,0		

Новосельский С.А. Смертность и продолжительность жизни в России [serial on-line] http://st.karelia.ru/∼lesheva/oglav.html

КЛАССИФИКАЦИЯ АНТИМИКРОБНЫХ ПРЕПАРАТОВ

В настоящее время только в России зарегистрировано > 200 противомикробных препаратов

Антибактериальные > 20 классов

$oldsymbol{eta}$ -лактамы

- пенициллины
- цефалоспорины
- карбапенемы
- монобактамы

Аминогликозиды и аминоциклитолы

Макролиды

Линкосамиды

Кетолиды

Стрептограмины

Тетрациклины

Хлорамфеникол

Гликопептиды

Хинолоны

Рифамицины

Нитроимидазолы

Антифолаты

Циклические пептиды

Нитрофураны

Оксихинолины

Фосфомицин

Фузиданы

Мупироцин

Оксазолидиноны

Эверниномицины

Глицилциклины

Противогрибковые - 8 классов

Полиены

Азолы

Аллиламины и тиокарбаматы

Гризеофульвин

Аналоги

нуклеозидов

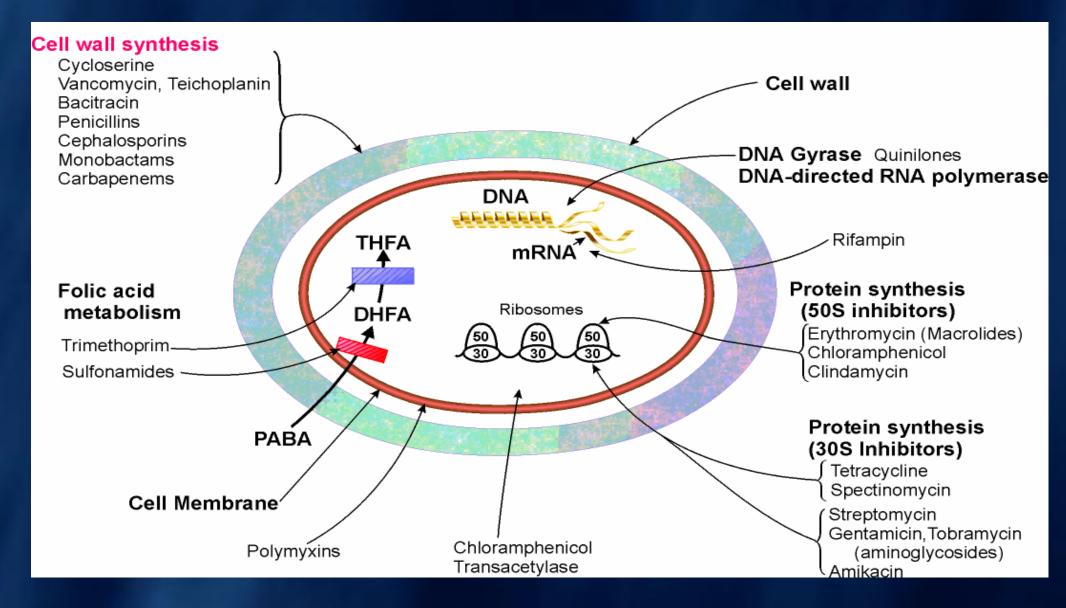
Эхинокандины

Пневмокандины

Никкомицины

Противовирусные - 8 классов

Противопротозойные - 12 классов


ОСОБЕННОСТИ ФАРМАКОДИНАМИКИ АНТИМИКРОБНЫХ ПРЕПАРАТОВ (I)

- Мишенью действия АМП являются микроорганизмы, а не макроорганизм
- АМП характеризуются избирательностью действия в отношении определенных видов и родов микроорганизмов, которая определяется наличием мишени действия и ее доступности для АМП

ОСОБЕННОСТИ ФАРМАКОДИНАМИКИ АНТИМИКРОБНЫХ ПРЕПАРАТОВ (II)

- Действие АБП на микроорганизм, изменение активности в зависимости от механизмов резистентности (эффективность АБ терапии)
- Непосредственное и опосредованное действие на клетки и физиологические функции организма человека (токсичность)

"МИШЕНИ" ДЕЙСТВИЯ ДЛЯ АМП

ОСОБЕННОСТИ ФАРМАКОДИНАМИКИ АНТИМИКРОБНЫХ ПРЕПАРАТОВ (III)

 Избирательность действия АМП характеризуется спектром активности

Спектр активности – величина переменная

Деление АМП на препараты "узкого" и "широкого" спектра является условным, клиническая значимость его - спорная

ПАРАМЕТРЫ, ХАРАКТЕРИЗУЮЩИЕ АКТИВНОСТЬ АМП

Минимальная подавляющая концентрация (МПК или MIC)

 Наименьшая концентрация АМП, способная подавить видимый рост микроорганизма in vitro (измеряется в мкг/мл или мг/л)

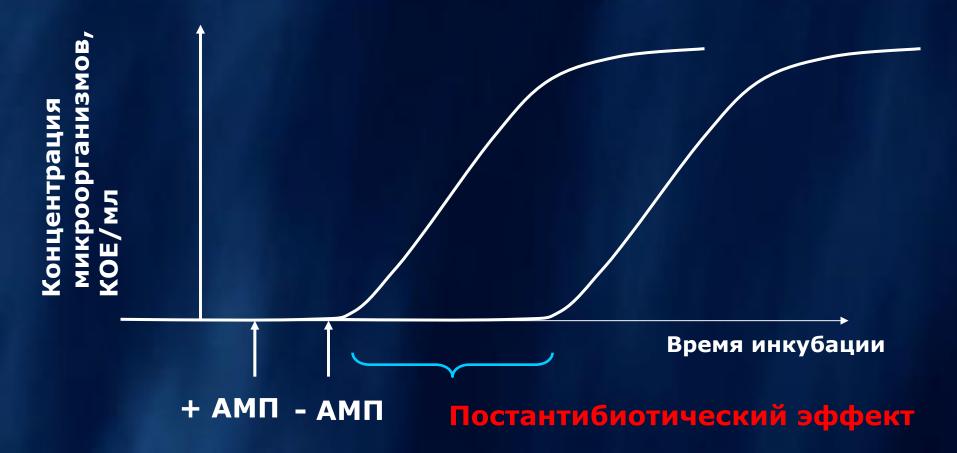
МПК₅₀ – МПК АМП для 50% исследованных штаммов

МПК о - МПК АМП для 90% исследованных штаммов

Минимальная бактерицидная концентрация (МБК или МВС)

 Наименьшая концентрация АМП, вызывающая гибель 99,9% микроорганизмов in vitro в течение определенного времени (измеряется в мкг/мл или мг/л)

<u>Чем меньше МПК и МБК, тем выше активность АМП</u> в отношении данного возбудителя

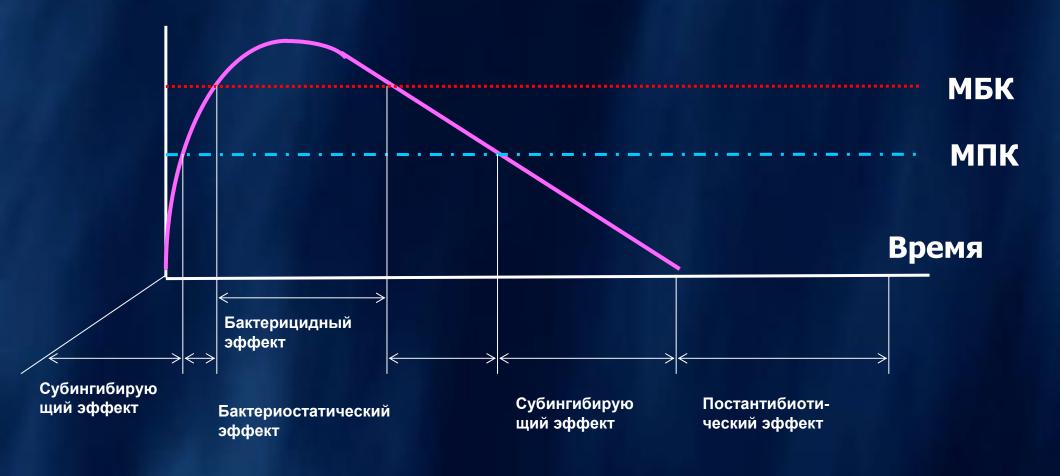

ЛИНКОМИЦИН/КЛИНДАМИЦИН: СРАВНИТЕЛЬНАЯ АКТИВНОСТЬ

МПК, мг/л

	Линкомицин	Клиндамицин
Staphylococcus aureus	0,5-2	0,1-1
Streptococcus pyogenes	0,05-1	0,01-0,25
Streptococcus pneumoniae	0,1-1	0,05
Enterococcus faecalis	2-64	0,05-64
Neisseria gonorrhoeae	8-64	0,5-4
Neisseria meningitidis	>32	4
Haemophilus influenzae	4-16	0,5-16
Bacteroides fragilis	2-4	0,02-2

ОСОБЕННОСТИ ФАРМАКОДИНАМИКИ АНТИМИКРОБНЫХ ПРЕПАРАТОВ (IV)

• Постантибиотический эффект – временное прекращение размножения микроорганизмов после ограниченного периода воздействия АМП


ХАРАКТЕР ДЕЙСТВИЯ АНТИМИКРОБНЫХПРЕПАРАТОВ

• Бактериостатическое (фунги- или протозоаститическое) – прекращение деления клеток

• Бактерицидное (фунги- или протозоацидное) – полное разрушение клетки возбудителя

ДИНАМИКА АНТИМИКРОБНЫХ ЭФФЕКТОВ В ПРОЦЕССЕ ЛЕЧЕНИЯ

Концентрация антибиотика в плазме

НАЗНАЧЕНИЕ БАКТЕРИЦИДНЫХ АМП ПРЕДПОЧТИТЕЛЬНО ПРИ

- Жизнеугрожающих инфекциях (сепсис, менингит и др.)
- Инфекциях у лиц с иммунодефицитом (нейтропеническая лихорадка и др.)
- Труднодоступных очагах инфекции (инфекционный эндокардит, остеомиелит)

ТИПЫ АНТИМИКРОБНОЙ АКТИВНОСТИ: ВРЕМЯЗАВИСИМОЕ ДЕЙСТВИЕ

Основной предиктор эффективности Т> МПК, %


ФАРМАКОДИНАМИКА АМП С ВРЕМЯЗАВИСИМЫМ ДЕЙСТВИЕМ

- Скорость гибели бактерий почти не изменяется при повышении концентрации АБП > 4 раз выше МПК
- Целью лечения является поддержание концентрации АБП выше МПК в течение определенного времени от интервала дозирования
 - > для *КАРБАПЕНЕМОВ* не менее 30% интервала дозирования
 - > для *ПЕНИЦИЛЛИНОВ* не менее 40% интервала дозирования
 - > для *ЦЕФАЛОСПОРИНОВ* не менее 50% интервала дозирования

НЕДОПУСТИМО УМЕНЬШАТЬ КРАТНОСТЬ ВВЕДЕНИЯ ЭТИХ ПРЕПАРАТОВ В ТЕЧЕНИЕ СУТОК

ТИПЫ АНТИМИКРОБНОЙ АКТИВНОСТИ: КОНЦЕНТРАЦИОННОЗАВИСИМОЕ ДЕЙСТВИЕ

Предикторы эффективности - Стах/МПК и ПФК/МПК

ФАРМАКОДИНАМИКА АМП С КОНЦЕНТРАЦИОННОЗАВИСИМЫМ ДЕЙСТВИЕМ

- Группы АМП с концентрационнозависимым действием:
 - Аминогликозиды
 - Фторхинолоны
 - Тетрациклины
 - Кетолиды
 - Оксазолидиноны
- Эффективность терапии достигается при ПФК/МПК > 125, Cmax/МПК > 8-10

ДОПУСТИМО ОДНОКРАТНОЕ ВВЕДЕНИЕ ВСЕЙ СУТОЧНОЙ ДОЗЫ ЭТИХ ПРЕПАРАТОВ

ОСОБЕННОСТИ ФАРМАКОДИНАМИКИ АНТИМИКРОБНЫХ ПРЕПАРАТОВ (V)

• Активность АМП снижается со временим в связи с развитием резистентности

Эволюция

лечения

гонореи

ВИДЫ РЕЗИСТЕНТНОСТИ К АМП (І)

Природная (истинная, первичная):

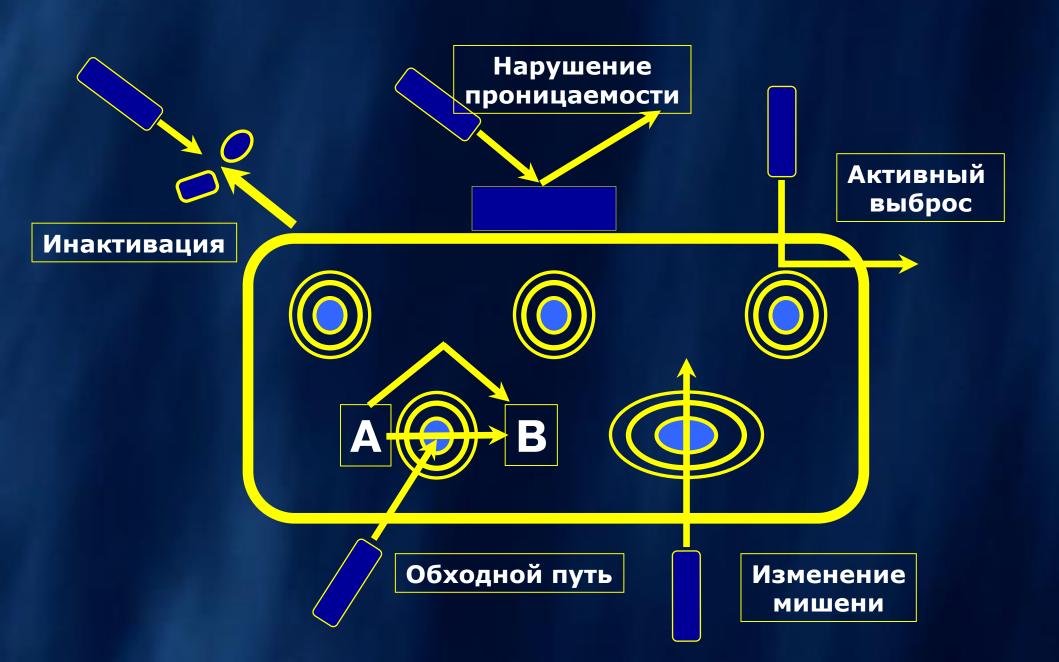
- Обусловлена отсутствием мишени действия или ее недоступностью для АМП
- Легко прогнозируема
- АМП клинически неэффективны

Примеры:

- M.pneumoniae к β-лактамным АМП
- Коагулаза(-) стафилококки к ЦС III поколения
- S.maltophilia к большинству известных классов, кроме триметоприма/сульфаметоксазола


ВИДЫ РЕЗИСТЕНТНОСТИ К АМП (II)

Приобретенная (вторичная):


- Свойство отдельных штаммов бактерий сохранять жизнеспособность при концентрациях АМП, подавляющих основную часть микробной популяции
 - Генетически обусловлена
 - Не обязательно приводит к ↓ клинической эффективности АМП

ИСТОЧНИКИ РАЗВИТИЯ РЕЗИСТЕНТНОСТИ К АМП

- Селекция штаммов с природной резистентностью
- Приобретение чужеродной ДНК:
 - Плазмиды
 - Транспозоны и другие мобильные генетические элементы
 - Мозаичные гены
- Мутации

МЕХАНИЗМЫ РЕЗИСТЕНТНОСТИ К АМП

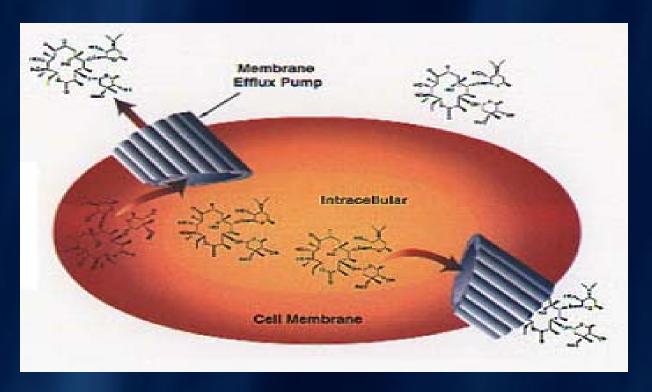
ВОЗМОЖНЫЕ МЕХАНИЗМЫ РЕЗИСТЕНТНОСТИ К АНТИБИОТИКАМ (I)

Антибиотик	Непрони- цаемость			Изменение мишени	Обходн. путь	Активн. выброс
Пенициллины	+	+		ПСБ		
Цефалоспорины	+	+		ПСБ		
Карбапенемы	+	+		ПСБ		
Аминогликозиды	+		+	+		
Хинолоны	+			+		+
Тетрациклины			+	+		+
Линкозамиды	+		+	+		

ВОЗМОЖНЫЕ МЕХАНИЗМЫ РЕЗИСТЕНТНОСТИ К АНТИБИОТИКАМ (II)

Антибиотик	Непрони- цаемость		_	Изменение мишени	Обходн. путь	. Активный выброс
Макролиды	+	+	+			+
Гликопептиды	+			+		
Хлорамфеникол	+		+	+		+
Рифампицин			+	+		
Сульфаниламиды	+				+	
Триметоприм					+	

МЕХАНИЗМЫ ФОРМИРОВАНИЯ УСТОЙЧИВОСТИ К БЕТА-ЛАКТАМАМ



НАИБОЛЕЕ РАСПРОСТРАНЕННЫЕ БЕТА-ЛАКТАМАЗЫ И ИХ СВОЙСТВА

Ферменты	Характеристика
Плазмидные β-лактамазы класса А стафилококков	Гидролизуют природные и полусинтетические пенициллины кроме метициллина и оксациллина. Чувствительны к ингибиторам.
Плазмидные β-лактамазы широкого спектра класса А грамотрицательных бактерий	Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I поколения. Чувствительны к ингибиторам.
Плазмидные β-лактамазы расширенного спектра класса A грамотрицательных бактерий	Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I-IV поколения. Чувствительны к ингибиторам.
Хромосомные β-лактамазы класса С грамотрицательных бактерий	Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I-III поколения. Не чувствительны к ингибиторам.
Хромосомные β-лактамазы класса А грамотрицательных бактерий	Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I-II поколения. Чувствительны к ингибиторам.
Хромосомные β-лактамазы класса В грамотрицательных бактерий	Эффективно гидролизуют практически все β-лактамы, включая карбапенемы. Не чувствительны к ингибиторам.
Плазмидные β-лактамазы класса D грамотрицательных бактерий (преимущественно P.aeruginosa)	Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I-II поколения. Многие способны также гидролизовать цефалоспорины III поколения. Большинство не чувствительны к ингибиторам.

МЕХАНИЗМЫ ФОРМИРОВАНИЯ УСТОЙЧИВОСТИ К МАКРОЛИДАМ

Активный эффлюкс

Модификация мишени (метилирование рибосомы)

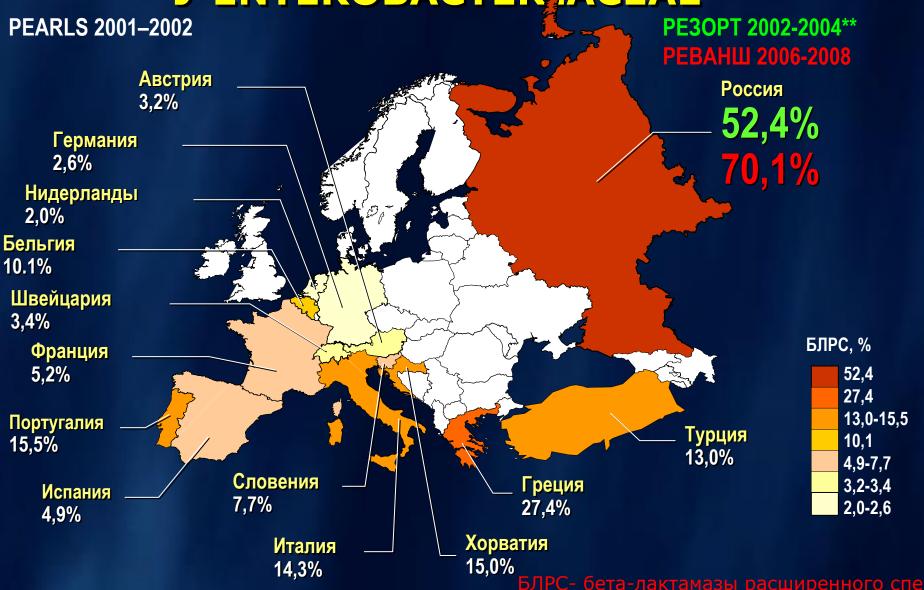
ФЕНОТИПЫ РЕЗИСТЕНТНОСТИ S.pneumoniae И S.pyogenes К МАКРОЛИДАМ ПРИ РАЗНЫХ ГЕНОТИПАХ

MLSB	Фенотип резистентност	N M
R	Макролиды 14-чл.	R
R	Макролиды 15-чл.	R
R	Макролиды 16-чл.	S
R	Линкозамиды	S
R	Стрептограмин В	S
>64 мг/л	МПК эритромицина	<64 мг/л
Метилирование	Механизм	Эффлюкс
erm	Гены	mef

НЕБЛАГОПРИЯТНЫЕ ПОСЛЕДСТИЯ РОСТА АНТИБИОТИКОРЕЗИСТЕНТНОСТИ

- Сложности с выбором препаратов для эмпирической терапии
- Ухудшение клинических исходов
 (↑ летальности, частоты осложнений)
- † длительности госпитализации и потребляемых ресурсов
- ↑ затрат на лечение

ЭКОНОМИЧЕСКОЕ "БРЕМЯ" ИНФИЦИРОВАНИЯ ПОЛИРЕЗИСТЕНТНЫМИ ВОЗБУДИТЕЛЯМИ


Микроорганизм/ группа	Вид инфекции	Затраты (US\$)	Ссылка
БЛРС(+) vs БЛРС(-) энтеробактерии	Различные (в т.ч. бактериемия)	66590 vs 22231	[1]
MRSA vs MSSA	Бактериемия	26424 vs 19212	[2]
Полирезистентные* vs "обычные" штаммы <i>A.baumannii</i>	Инфицированные ожоги	201558 vs 102983	[3]

БЛРС – β -лактамазы расширенного спектра; MRSA – метициллинорезистентные штаммы S.aureus MSSA – метициллиночувствительные штаммы S.aureus

Lautenbach E., et al. Clin Infect Dis 2001; 32: 1162-71
 Cosgrove S.E., et al. Control Hosp Epidemiol 2005; 26: 166-74
 Wilson S.J., et al. Am J Infect Control 2004; 32: 342-4

^{*} Резистентные к пенициллинам, ЦС, ципрофлоксацину, гентамицину, имипенему

РАСПРОСТРАНЕННОСТЬ БЛРС* У ENTEROBACTER ACEAE

* S.K. Bouchillon et al., Int J Antimicrob Agents 2004 (24): 119-24 **M.Edelstein et al., ICAAC, 2004, Washington, Poster: C2-1331

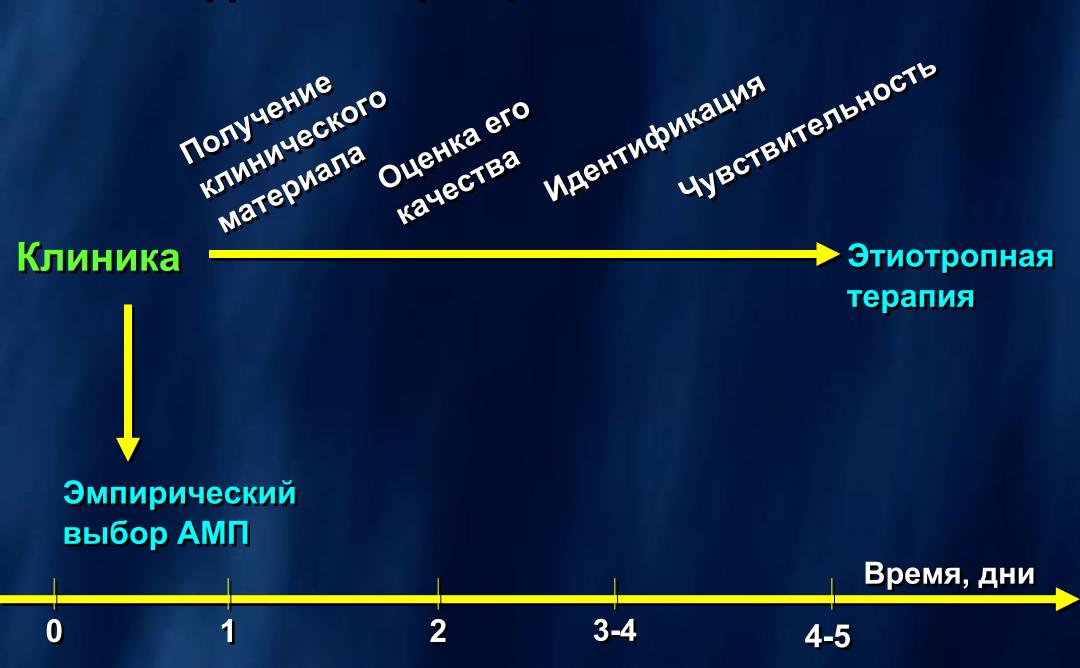
ЧАСТОТА РЕЗИСТЕНТНОСТИ *E. coli* К ФТОРХИНОЛОНАМ ПРИ ВНЕБОЛЬНИЧНЫХ ИМП*

- **Резистентность** *E. coli* при осложненных ИМП, %
 - Резистентность *E. coli* при неосложненных ИМП, %

ОБЩИЕ ПРИНЦИПЫ РАЦИОНАЛЬНОГО НАЗНАЧЕНИЯ СИСТЕМНЫХ АМП

- Точно поставленный диагноз
- Обоснованность применения АМП
- Выбор оптимального режима применения АМП (локализация и тяжесть инфекции, индивидуальных особенности пациента, ФК/ФД ЛС)
- Определение оптимальной продолжительности антимикробной терапии

КАКИМИ СВОЙСТВАМИ НЕ ОБЛАДАЮТ АМП?


- Не снижают температуру
- Не обладают анальгезирующим действием
- Не заменяют санитарно-эпидемиологических мероприятий и адекватной хирургической техники
- Не являются транквилизаторами (для пациентов, их родственников, врачей и администрации ЛПУ)

ОБЩИЕ ПРИНЦИПЫ РАЦИОНАЛЬНОГО НАЗНАЧЕНИЯ СИСТЕМНЫХ АМП

- Точно поставленный диагноз
- Обоснованность применения АМП
- Выбор оптимального режима применения АМП (локализация и тяжесть инфекции, индивидуальных особенности пациента, ФК/ФД ЛС)
- Определение оптимальной продолжительности антимикробной терапии

Максимально высокая вероятность излечения + минимальный риск селекции резистентности

ДВЕ КОНЦЕПЦИИ ВЫБОРА АМП

ЭТИОТРОПНАЯ АНТИМИКРОБНАЯ ТЕРАПИЯ

- Целенаправленное применение АМП, активных в отношении установленного возбудителя инфекции:
 - наиболее рациональный вариант терапии
 - позволяет выбрать АМП с наиболее оптимальным соотношением эффективность/безопасность

ЭМПИРИЧЕСКАЯ АНТИМИКРОБНАЯ ТЕРАПИЯ

 Применение АМП до получения сведений о возбудителе инфекционного процесса и его чувствительности к АМП

Эмпирическая терапия

/

Терапия "вслепую"

Эмпирическая терапия

Назначение АМП широкого спектра

КРИТЕРИИ ВЫБОРА АМП ДЛЯ ЭМПИРИЧЕСКОЙ ТЕРАПИИ

- Активность в отношении ключевых (наиболее вероятных) возбудителей инфекции
- Способность преодолевать значимые механизмы вторичной резистентности (локальные данные)
- Способность создавать адекватные концентрации в очаге инфекции
- Эффективность, подтвержденная в контролируемых клинических исследованиях
- Профиль безопасности и удобство применения
- Оптимальное соотношение затраты/эффективность

ВЫБОР АМП ДЛЯ ЭМПИРИЧЕСКОЙ ТЕРАПИИ:ФАКТОРЫ СО СТОРОНЫ ПАЦИЕНТА (I)

- Возраст и генетические особенности:
 - этиология инфекций
 - фармакокинетика, риск лекарственных взаимодействий
- Предшествующий прием АМП:
 - гиперчувствительность
 - риск инфицирования АБ резистентными возбудителями
- Место возникновения инфекции:
 - внебольничные
 - нозокомиальные
 - связанные с оказанием медицинской помощи

ВЫБОР АМП ДЛЯ ЭМПИРИЧЕСКОЙ ТЕРАПИИ:ФАКТОРЫ СО СТОРОНЫ ПАЦИЕНТА(II)

- Локализация инфекции:
 - инфекции в "забарьерных органах"
 - наличие инородных тел (шунты, искусственный сустав)
 - локусы с плохим кровоснабжением (абсцесс)

• Тяжесть инфекции:

- выбор места лечения
- сроки начала терапии
- путь введения АМП (внутрь, внутривенно)

• Сопутствующие заболевания/состояния:

- функция почек и печени
- хронич. сопут. заболевания, иммунодефицит
- беременность, лактация

КОНЦЕПЦИЯ СТУПЕНЧАТОЙ АНТИМИКРОБНОЙ ТЕРАПИИ

Характеристика перорального АМП

Тот же, что и парентеральный АМП, высокая биодоступностью

Другой АМП со схожим спектром и механизмом, высокой биодоступность

Амоксициллин/клавуланат Спирамицин, Азитромицин Кларитромицин Цефуроксим Левофлоксацин

Моксифлоксацин

Цефотаксим → Амокси/клавуланат Цефтриаксон → Амокси/клавуланат Ампициллин → Амоксициллин Эритромицин → Клиритромицин и др.

ПРЕИМУЩЕСТВА СТУПЕНЧАТОЙ АНТИМИКРОБНОЙ ТЕРАПИИ

- ↓ риск постинъекционных осложнений
- ↓ длительности госпитализации
 ⇒ профилактика
 нозокомиальных инфекций
- ↓ затрат на лечение
- ↑ качества жизни пациента

ОЦЕНКА ЭФФЕКТИВНОСТИ АНТИМИКРОБНОЙ ТЕРАПИИ

- Основной метод динамика клинических симптомов/признаков, лабораторных данных
- Эффективность эмпирической терапии оценивается через 48 ч ⇒ продолжается или пересматривается
- Преждевременная отмена эмпирической АМТ документированная неэффективность, НЛР, ЛС с ограничениями по длительности (аминогликозиды)

ВОПРОСЫ, ВОЗНИКАЮЩИЕ ПРИ НЕЭФФЕКТИВНОСТИ ЭМПИРИЧЕСКОЙ ТЕРАПИИ

- 1. Есть ли инфекция?
- 2. Действительно ли пациент получал антибиотик?
- 3. Не слишком ли поздно назначен антибиотик?
- 4. Правильно ли выбран АМП и режим применения (доза, длительность, путь введения)?
- 5. Нет ли нерациональных комбинаций АМП (антагонизм) и значимых лек. взаимодействий?
- 6. Нет ли суперинфекции?
- 7. Не нужна ли хирургическая помощь?