ISBN 978-5-7508-1576-0

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.2. МЕТОДЫ КОНТРОЛЯ. БИОЛОГИЧЕСКИЕ И МИКРОБИОЛОГИЧЕСКИЕ ФАКТОРЫ

Микробиологическое измерение концентрации Komagataella (Pichia) pastoris ВКПМ Y-4225 в воздухе рабочей зоны

Методические указания МУК 4.2.3384—16

МУК 4.2.3384—16

ББК 51.24 М59

М59 **Микробиологическое** измерение концентрации *Котадаtaella (Pichia) pastoris* ВКПМ Y-4225 в воздухе рабочей зоны: Методические указания.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2017.—8 с.

ISBN 978—5—7508—

- 1. Разработаны и подготовлены ГБОУ ВПО РНИМУ им. Н.И. Пирогова Минздрава России (д.б.н. Н. И. Шеина).
- 2. Рекомендованы к утверждению Комиссией по государственному санитарно-эпидемиологическому нормированию Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (протокол от 20 мая 2016 г. № 1).
- 3. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации А. Ю. Поповой 12 июля 2016 г.
 - 4. Введены впервые.

ББК 51.24

Ответственный за выпуск Н. В. Митрохина

Редактор Л. С. Кучурова Компьютерная верстка Е. В. Ломановой

Подписано в печать 03.04.17

Формат 60х88/16

Тираж 125 экз.

Печ. л. 0,5 Заказ 28

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека 127994, Москва, Вадковский пер., д. 18, стр. 5, 7

Оригинал-макет подготовлен к печати и тиражирован отделением издательского обеспечения отдела научно-методического обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а Реализация печатных изданий, тел./факс: 8 (495) 952-50-89

- © Роспотребнадзор, 2017
- © Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2017

УТВЕРЖЛАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации

А. Ю. Попова

12 июля 2016 г.

4.2. МЕТОДЫ КОНТРОЛЯ. БИОЛОГИЧЕСКИЕ И МИКРОБИОЛОГИЧЕСКИЕ ФАКТОРЫ

Микробиологическое измерение концентрации Komagataella (Pichia) pastoris ВКПМ Y-4225 в воздухе рабочей зоны

Методические указания МУК 4.2.3384—16

1. Назначение и область применения

- 1.1. Настоящие методические указания устанавливают порядок применения метода микробиологического количественного анализа концентрации *Komagataella (Pichia) pastoris* ВКПМ Y-4225 в воздухе рабочей зоны в диапазоне концентраций от 50 до 50 000 клеток в 1 м³ воздуха.
 - 1.2. Методические указания носят рекомендательный характер.

2. Биологическая характеристика штамма Komagataella pastoris ВКПМ Y-4225 и его гигиенический норматив в воздухе рабочей зоны

Штамм Komagataella (Pichia) pastoris ВКПМ Y-4225, включающий рекомбинантный фрагмент ДНК, предполагается использовать в промышленном производстве фермента фитазы для кормовых целей.

Мезофил. Рост очень хороший – через 24 ч при 25—28 °C образует колонии на глюкозо-пептонном агаре (ГПА).

Штамм растет на агаризованных средах — глюкозо-пептон-дрожжевом агаре (YPD), глицерин-пептон-дрожжевом агаре (YPG), мясо-пептонном агаре (МПА), АГВ-среде, картофельный агаре (KA).

На среде YPD штамм образует клетки округлой, слегка овальной формы размером 5—10 мкм, часть клеток имеет на своей поверхности почки или соединена с дочерними клетками.

При росте на твердой среде образуются гладкие, круглые колонии с матовой поверхностью светло-кремового цвета, край неровный. При росте в жидкой среде клетки образуют ровную интенсивную суспензию. Культура имеет характерный запах метилотрофных дрожжей.

Штамм *К. pastoris* депонирован во Всероссийской коллекции промышленных микроорганизмов под номером ВКПМ Y-4225.

Предельно допустимая концентрация (ПДК) в воздухе рабочей зоны – $5~000~{\rm kn/m^3}$, пометка A.

3. Пределы измерений

Методика обеспечивает выполнение измерений количества клеток гриба в воздухе рабочей зоны в диапазоне концентраций от 50 до 50 000 клеток в $1~{\rm m}^3$ воздуха при доверительной вероятности 0.95.

4. Методы измерений

Метод основан на аспирации из воздуха рабочей зоны клеток псевдомицелия и подсчете количества выросших колоний по типичным культурально-морфологическим признакам.

5. Средства измерений, вспомогательные устройства, реактивы и материалы

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, реактивы и материалы.

5.1. Средства измерений

Барометр-анероид с диапазоном измерения атмос-	=
ферного давления 5—790 мм рт. ст. и с пределом	
допустимой погрешности $\pm 2,5$ мм рт. ст.	ТУ 2504-1799—75
Весы лабораторные аналитические, наиболь-	
ший предел взвешивания 110 г, предел допус-	
тимой погрешности \pm 0,2 мг	ГОСТ Р 53228—08
Колбы мерные 2-100-2, 2-250-2, 2-1000-2	ГОСТ 1770—74
Пипетки градуированные 2-го класса точности	
вместимостью 1,0; 2,0; 5,0; 10 см ³	ГОСТ 29227—91
Цилиндры мерные 2-го класса точности	
вместимостью 25 и 50 см ³	ГОСТ 1770—74
Термометр лабораторный шкальный, пределы	
измерения 0—55 °C	ТУ 25-2021.003—88
Аспирационный аппарат и устройство для	
отбора проб возлуха	

Примечание. Допускается использование средств измерения с аналогичными или лучшими характеристиками.

5.2. Вспомогательные устройства и материалы

Шкаф сушильный стерилизационный, позволяю-	-
щий поддерживать температуру (160 ± 5) °C	ТУ 9452-010-00141798—02
Термостаты, позволяющие поддерживать ра-	
бочую температуру (28 ± 2) и (37 ± 2) °C	ТУ 9452-002-00141798—97
Автоклав электрический	ГОСТ 9586—75
Стерилизаторы паровые медицинские	ГОСТ Р ЕН 13060—11,
	ГОСТ Р 51935—02
Дистиллятор	ТУ 4952-007-33142130—2000
Облучатель бактерицидный настенный	ТУ 9444-015-03965956—08
Холодильник бытовой	ГОСТ 26678—85
Микроскоп биологический с иммерсионной	
системой	
Лупа с увеличением × 10	ГОСТ 25706—83
Пробирки типов П1, П2	ГОСТ 25336—82
Спиртовки лабораторные стеклянные	ГОСТ 23932—90
Чашки биологические (Петри) или одноразо-	
вые из полимерных материалов	ГОСТ 23932—90
Воронки конусные диаметром 40—45 мм	ГОСТ 25336—82
Груша резиновая	ТУ 9398-005-0576-9082—03
Петля бактериологическая	
Марля медицинская	ГОСТ 9412—77
Вата медицинская гигроскопическая	ГОСТ 25556—81
Бумага фильтровальная лабораторная	ГОСТ 12026—76

Примечание. Допускается применение оборудования с аналогичными или лучшими техническими характеристиками.

5.3. Реактивы и питательные среды

Агар микробиологический	ГОСТ 17206—96
Вода дистиллированная	ГОСТ 6709—90
Глюкоза	ГОСТ 6038—79
Пептон сухой ферментативный	ГОСТ 13805—76
Спирт этиловый технический	ГОСТ 17299—78
Спирт этиловый ректификованный	ГОСТ Р 51652—2000 или
	ГОСТ 18300—87
Дрожжевой экстракт, сухой	ГОСТ 17206—84

Примечание. Допускается использование других питательных сред и диагностических препаратов с аналогичными характеристиками.

6. Требования безопасности

При выполнении измерений концентрации клеток гриба в воздухе рабочей зоны соблюдают требования следующих нормативных документов:

- СП 1.3.2322—08 «Безопасность работы с микроорганизмами III— IV групп патогенности (опасности) и возбудителями паразитарных болезней»:
- СП 1.3.2518—09 «Безопасность работы с микроорганизмами III— IV групп патогенности (опасности) и возбудителями паразитарных болезней. Дополнения и изменения 1 к СП 1.3.2322—08»;
- $-\Gamma$ ОСТ 12.1.019—79 «ССБТ. Электробезопасность. Электробезопасность при работе с электроустановками» и инструкции по эксплуатации прибора.

Все виды работ с реактивами проводят только в вытяжном шкафу при работающей вентиляции, работа с биологическим материалом осуществляется в боксе, оборудованном бактерицидными лампами.

7. Требования к квалификации операторов

К выполнению измерений и обработке их результатов допускают лиц с высшим или средним специальным образованием, прошедших соответствующую подготовку и имеющих навыки работы в области микробиологических исследований.

8. Условия измерений

Приготовление сред, подготовку к анализу проводят в следующих условиях:

- температура воздуха (20 ± 5) °C;

- атмосферное давление (760 \pm 20) мм рт. ст.;

- влажность воздуха не более 80 %.

9. Приготовление глюкозо-пептон-дрожжевого агара (YPD)

Для приготовления глюкозо-пептон-дрожжевого агара используют отдельные компоненты среды следующего состава (г/1 000 см 3): пептон – 10,0 г; глюкоза – 10,0 г; дрожжевой экстракт – 10,0 г; агар-агар – 15,0 г; дистиллированная вода – 1 000 см 3 .

Сухие компоненты растворяют в 1 000 см³ дистиллированной воды, тщательно перемешивают и нагревают до полного растворения агара.

Приготовленную среду разливают в стерильные колбы по 250—500 см³ и автоклавируют при 121 °C в течение 15 мин.

Готовую среду хранят в защищенных от света условиях при температуре не выше $8\,^{\circ}\mathrm{C}$ в течение 10 дней, не более.

10. Проведение измерения

10.1. Отбор проб воздуха

Отбор проб воздуха проводят с учетов требований ГОСТ 12.1.005—88 с изменением № 1 «ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны» и ГОСТ 8.563—96. «ГСИ. Методики выполнения измерений».

Для этого воздух аспирируют при помощи пробоотборника на поверхность плотной питательной среды в соответствии с технической документацией (инструкцией) на прибор. Время аспирации и объем отбираемого воздуха зависит от предполагаемой концентрации микроорганизма.

Аппарат перед каждым отбором пробы воздуха тщательно протирают 96° этиловым спиртом. Особенно тщательно обрабатывают поверхность подвижного диска и внутреннюю стенку прибора, наружную и внутреннюю стенку крышки. На подвижный диск устанавливают подготовленную чашку Петри со средой, одновременно снимая с нее крышку. Прибор закрывают. Соприкосновение крышки прибора со средой недопустимо (количество питательной среды в чашки вносят в соответствии с инструкцией к прибору). После отбора пробы воздуха и остановки диска прибор открывают, быстро снимают чашку Петри и закрывают крышкой от данной чашки. На дне чашки Петри стеклографом отмечают точку контроля, время аспирации и дату отбора пробы.

10.2. Выполнение анализа

При выполнении анализа воздуха прямым методом стерильную агаризованную среду (YPD) расплавляют, остужают до 50—60 °C и разливают в чашки Петри.

Контроль чистоты розлива проводят в соответствии с п. 7.1.1 МУК 4.2.2316—08. Для этого чашки с застывшей средой помещают в термостат при температуре 37 °C не менее чем на 18 часов. Проросшие чашки бракуют, стерильные чашки используют для контроля воздуха. Разлитую в чашки питательную среду хранят при температуре (2—8) °C не более 10 лней.

После отбора проб воздуха чашки Петри помещают в термостат с температурой (28 ± 2) °C. Через 1—3 суток проводят подсчет выросших колоний по культурально-морфологическим признакам.

Ростовые свойства используемой питательной среды должны быть проверены до проведения анализа воздуха в соответствии с требованиями к ростовым свойствам питательных сред, руководствуясь МУК 4.2.2316—08. Для этого эталонный музейный штамм *K. pastoris* ВКПМ Y-4225 высевается на 2—3 чашки используемой среды.

Возможны только 2—3 пассажа лиофилизованной культуры музейного штамма во избежание потери им заданных ростовых свойств.

11. Вычисление результатов измерения

Расчет концентрации клеток проводят по формуле:

$$K = \frac{\Pi \cdot 1000}{C \cdot T}$$
, где

K – концентрация штамма в воздухе, кл/м³;

 Π – количество типичных колоний, выросших на чашке Петри; $1\,000$ – коэффициент пересчета на $1\,\mathrm{m}^3$ воздуха;

C – скорость аспирации воздуха, л/мин;

T — время аспирации, мин.

12. Оформление результатов измерений

Результаты измерений оформляют протоколом по ниже приведенной форме.

Протокол № ___ количественного микробиологического анализа Komagataella pastoris ВКПМ Y-4225 в воздухе рабочей зоны

1. Дата проведения анализа
2. Рабочее место (профессия работающего)
3. Место отбора пробы (название и адрес организации, производство, техн
логическая стадия, точка отбора пробы)
4. Вид пробоотборника
5. Дата последней метрологической поверки оборудования для отбора проб
6. Питательная среда, время инкубации
7. Результаты испытания ростовых свойств питательной среды
8. Количественная и качественная характеристика выросших колоний (к
личество типичных колоний)
9. Результаты идентификации микроорганизмов К. pastoris ВКПМ Y-422
(морфологические признаки)
10. Результаты расчета концентрации штамма
11. Соотношение полученных результатов с уровнем ПДК _{р.з.}
12. Отбор пробы проведен (Ф.И.О., должность, дата, подпись)
13. Идентификация штамма и расчет концентрации проведены (Ф.И.С
должность, дата, подпись)
•