microbius
РОССИЙСКИЙ МИКРОБИОЛОГИЧЕСКИЙ ПОРТАЛ
Поиск
rss

ООО "АЛИФАКС"

ИНН 7718314415

ID 2Vtzqx7tLnC

Реклама

ООО "АЛИФАКС"

ИНН 7718314415

ID 2VtzqwzYS9e

Реклама

ООО "АЛИФАКС"

ИНН 7718314415

ID 2VtzqvtsLHv

Реклама

Новости

Новости РФ
В сточных водах Москвы обнаружены микроорганизмы, устойчивые к большинству известных классов антибиотиков
#сточные воды #резистом #бактериальная резистентность
Сточные воды – источник опасных микроорганизмов, которые активно эволюционируют, передавая друг другу гены устойчивости к широкому спектру антибиотиков.     Микробиологи и генетики ФИЦ Биотехнологии РАН проанализировали геномы микроорганизмов из сточных вод и активного ила очистных сооружений города Москвы. У живущих там микроорганизмов нашли несколько сотен генов, обеспечивающих устойчивость к различным антибиотикам, в том числе бета-лактамам, тетрациклинам, сульфонамидам, аминогликозидам, макролидам и дезинфицирующим средствам. Результаты работы опубликованы на страницах журнала Scientific Reports.    За счет широкого применения антибиотиков в медицине и сельском хозяйстве появляется все больше микроорганизмов, которые к ним устойчивы. Бактерии могут легко обмениваться генами резистентности к антибиотикам между собой и для этого им даже не нужно относиться к одному виду. Порой распространение таких генов происходит раньше, чем препарат проходит клинические испытания и появляется на полках аптек. Это снижает эффективность антибиотиков, тем самым приводя к тяжелым заболеваниям и даже гибели пациентов, а также увеличивает стоимость лечения. Проблема настолько остра, что Всемирная организация здравоохранения объявила конец эры антибиотиков еще в 2014 году.    Большие города, где люди легко могут заражать друг друга, создают для микроорганизмов благоприятные условия. Антибиотики, используемые в медицине и сельском хозяйстве, в конечном счете, попадают в канализацию, давая микроорганизмам возможность приспособиться к ним. Ученые ФИЦ Биотехнологии РАН собрали образцы сточных вод в Москве до и после очистки, а затем проанализировали гены всех живущих в них бактерий, чтобы найти среди них гены устойчивости к антибактериальным препаратам, оценить их распространенность и эффективность очистки сточных вод.    «Хотя московские водоочистные сооружения – одни из крупнейших в мире, исследования резистомов, или совокупности генов, придающих устойчивость к антибиотикам, до сих пор в них не проводились. Присутствие устойчивых бактерий и генов резистентности зависит от того, какие лекарства чаще всего используются, а также от особенностей использования воды в данной местности – например, из-за невысоких цен на воду москвичи тратят ее больше, чем те же европейцы, а значит, и концентрация органики в ней будет ниже. Поэтому нам важно было сравнить образцы из Москвы с данными из других крупных городов мира и узнать, насколько водоочистные сооружения в столице справляются со своей задачей», – рассказал о цели исследования Шахжахон Бегматов, научный сотрудник ФИЦ Биотехнологии РАН.    Обычно вода проходит три стадии очистки. Сначала применяются физические методы, например, фильтрация. Затем она попадает в биореакторы, где бактерии в активированном иле помогают удалить из нее органику, аммоний и фосфор. На последнем этапе происходит дезинфекция воды. «Прочитав» геномные последовательности, найденные в образцах из сточных вод и очистных сооружений Москвы, ученые обнаружили в воде до очистки большое количество бактерий, попадающих туда из фекальных масс. Особенно много встречалось представителей родов Collinsella, Bacteroides, Prevotella, Arcobacter, Arcobacteraceae, Blautia, Faecalibacterium, Streptococcus, Acinetobacter, Aeromonas и Veillonella. В предыдущих исследованиях этот же научных коллектив показал, что после очистки концентрация этих микроорганизмов снижалась до 50-100 раз.    В поступающих на очистку сточных водах гены резистентности составляли 0,05% от всех обнаруженных генов, что примерно соответствует двум генам на один бактериальный геном. Примерно такие же цифры характерны для большинства стран. Чаще всего, в 26% случаев, встречалась устойчивость к бета-лактамам, доля использования которых в медицинском секторе достигает 40%. В Европе и Бразилии исследователи наблюдали похожую картину: там подобные гены составляют 20-25% из общего числа генов резистентности. К удивлению исследователей, в очищенной воде, которая сбрасывается в реку Москва, доля генов устойчивости к антибиотикам снижалась всего в 3-4 раза. Однако, поскольку концентрация бактерий в очищенной воде ниже, примерно в сто раз, концентрация резистентных микроорганизмов в воде все-таки снижается намного сильнее.    «Мы обнаружили в московских сточных водах гены, которые делают бактерии устойчивыми к большинству известных классов антибиотиков. Эти же гены присутствуют у бактерий в очищенной воде, которая сбрасывается в реку Москва. Затем гены устойчивости к антибиотикам могут передаваться другим микроорганизмам и впоследствии возвращаться к человеку. Необходимо продолжать изучение этой проблемы, чтобы лучше понимать ее и, в конце концов, найти решение», – заключает Шахжахон Бегматов.
Российские молекулярные биологи обнаружили новый механизм работы бактериального иммунитета
#иммунные системы бактерий
Российские исследователи разобрались в действии новой иммунной системы бактерий, основанной на работе малоизученных белков из семейства аргонавтов.     Система, которую ученые назвали SPARDA, помогает бактериям защищаться от вирусов, вызывая гибель инфицированных клеток вместе с вирусом. Эта система основана на принципиально новом механизме деградации нуклеиновых кислот за счет дополнительных белков, ассоциированных с белком-аргонавтом, а не за счет активности самого аргонавта. О своих результатах исследователи рассказали в статье, опубликованной в Nature Microbiology.    Работу необычных белков-аргонавтов изучили ученые Института биологии гена РАН под руководством члена-корреспондента РАН А.В. Кульбачинского при участии сотрудников лаборатории белок-белковых взаимодействий ФИЦ Биотехнологии РАН. «И знаменитая система CRISPR-Cas, и прокариотические белки-аргонавты обнаруживают и расщепляют чужеродные нуклеиновые кислоты – ДНК, в которой закодирована генетическая информация, или РНК, которая является «копией» ДНК и посредником при синтезе белка. Узнавание «чужой» нуклеиновой кислоты происходит за счет коротких цепочек нуклеиновых кислот-«гидов», помогающих распознать нужные участки. Белки-аргонавты или белки Cas, если мы говорим о системе CRISPR-Cas, разрезают мишени ДНК или РНК, так как обладают нуклеазной активностью. Однако такую активность проявляют не все прокариотические аргонавты. Представители недавно обнаруженной большой группы так называемых «коротких» аргонавтов связывают нуклеиновые кислоты-гиды, но имеют иной механизм действия», – поясняет руководитель исследования.    Ученые исследовали короткие прокариотические аргонавты, которые кодируются в геномах совместно с предполагаемой «эффекторной» нуклеазой (то есть, белком, способным разрезать нуклеиновые кислоты), из разных видов бактерий. Было обнаружено, что короткие аргонавты образуют комплекс с эффекторной нуклеазой, который получил название SPARDA – short prokaryotic Argonaute, DNase and RNase associated, что переводится как «короткий прокариотический аргонавт, ассоциированный с ДНКазой и РНКазой». Этот комплекс состоит из двух разных цепочек аминокислот – самого короткого аргонавта и прочно ассоциированной с ним нуклеазы. Такой вывод биологи смогли подтвердить с помощью многоуглового измерения светорассеяния при хроматографическом разделении частиц по размерам (метод SEC-MALS) на установке miniDAWN (Wyatt Technology), которая входит в состав ЦКП «Промышленные биотехнологии» ФИЦ Биотехнологии РАН.    Ученые выяснили, что распознавание ДНК-мишени при помощи «гида» запускает нуклеазную активность SPARDA, что приводит к неизбирательному расщеплению клеточной ДНК. Такая активность не только останавливает развитие фаговой вирусной инфекции в клетках бактерий, но и может быть использована в биоинженерии и медицине для детекции целевых молекул ДНК (например, при диагностике инфекций).    «SPARDA может активироваться плазмидами (так называют небольшие кольцевые бактериальные ДНК) или фагами – вирусами, поражающими бактериальные клетки. Это приводит к деградации клеточной, плазмидной и вирусной ДНК и гибели клеток или их переходу в состояние покоя. Гибель инфицированных клеток останавливает развитие инфекции, обеспечивая защиту остальной части популяции от вируса. Эта работа расширяет спектр известных иммунных систем бактерий и предлагает новые пути их применения в генетических технологиях», – заключает руководитель исследования.    Работа поддержана грантом Российского научного фонда.
Узнайте о новостях и событиях микробиологии
Первыми получайте новости и информацию о событиях
up