microbius
РОССИЙСКИЙ МИКРОБИОЛОГИЧЕСКИЙ ПОРТАЛ
Поиск
rss

ООО "АЛИФАКС"

ИНН 7718314415

ID 2Vtzqx7tLnC

Реклама

ООО "АЛИФАКС"

ИНН 7718314415

ID 2VtzqwzYS9e

Реклама

ООО "АЛИФАКС"

ИНН 7718314415

ID 2VtzqvtsLHv

Реклама

Новый набор плазмид упростит генетическую модификацию метилотрофных дрожжей
Новый набор плазмид упростит генетическую модификацию метилотрофных дрожжей

Автор/авторы:
share
46
backnext

Система CRISPR-Cas9 адаптирована для геномного редактирования множества разных организмов, однако существующие подходы к генетической модификации довольно трудоемки и часто низкоэффективны. 

   В частности, такая проблема существовала и в случае метилотрофных дрожжей, широко используемых для производства ценных в фармакологии и пищевой промышленности белков. Сотрудники ФИЦ Биотехнологии РАН с коллегами разработали набор плазмид, доставляющих в клетки гены компонентов CRISPR-Cas9 в виде отдельных молекул ДНК, которые объединяются в одну генетическую конструкцию прямо в дрожжах.

   Это позволило значительно упростить процедуру геномного редактирования и достичь высокой эффективности введения CRISPR-Cas9 в дрожжевые клетки. Результаты работы опубликованы на страницах International Journal of Molecular Sciences. Исследование выполнено в рамках проекта Федеральной научно-технической программы развития генетических технологий и поддержана национальным проектом «Наука и университеты».

   Дрожжи с давних пор используются человеком, например, в виноделии и при приготовлении хлеба. Они также стали одним из важнейших объектов биотехнологии. В частности, так называемые метилотрофные дрожжи родов Ogataea и Komagataella оказались чрезвычайно востребованы для наработки белков, используемых в фармакологии и пищевой промышленности. При этом «заставить» дрожжи производить не свойственные им, но нужные человеку молекулы, можно, «вставив» интересующий ген в геном этих микроскопических грибов. Еще более широкие возможности открывает технология редактирования генома CRISPR-Cas9, которая позволяет значительно перестроить метаболизм клеток.

   CRISPR-Cas9 представляет собой систему бактериального иммунитета, поскольку с ее помощью микроорганизмы «запоминают» чужеродные ДНК и РНК, например, принадлежавшие вирусам, которые пытались когда-либо проникнуть в клетку. Принцип «запоминания» заключается в том, что белки Cas, с одной стороны, просто уничтожают чужеродные последовательности, чтобы предотвратить заражение, а с другой вырезают из генома патогена фрагменты, которые затем встраиваются в CRISPR-кассету — по сути, коллекцию генетических участков всех тех интервентов, с которыми столкнулась бактерия. Далее с CRISPR-кассеты синтезируются молекулы РНК, которые вместе с белком Cas9 «патрулируют» клетку и ищут уже знакомые генетические последовательности «врагов».

   Ученые адаптировали CRISPR-Cas9 систему для того, чтобы встраивать с ее помощью чужеродные, но зачастую ценные с точки зрения биотехнологии гены не только в клетки бактерий, но и дрожжей, растений и даже животных. Таким образом уже удается создавать устойчивые к болезням сорта сельскохозяйственных культур и улучшенные породы животных, а также лечить (пока не массово) тяжелые заболевания людей, например серповидноклеточную анемию и β-талассемию. Однако существующие подходы геномного редактирования, в том числе и для клеток дрожжей, довольно трудоемки и неудобны в использовании.

   Сотрудники ФИЦ Биотехнологии РАН (Москва) вместе с коллегами из Курчатовского института (Москва) предложили подход, который значительно упростит процесс редактирования генома при помощи системы CRISPR-Cas9 у метилотрофных дрожжей. За основу авторы взяли две искусственные плазмиды — кольцевые молекулы ДНК, — одна из которых несла ген, кодирующий белок Cas9, а вторая — короткую РНК, распознающую место в геноме, которое нужно «отредактировать». Кроме того, в последовательности включили бактериальные гены, обеспечивающие устойчивость к антибиотику генетицину. Эти гены служили своеобразным маркером, с помощью которого можно было точно выявить те дрожжевые клетки, в которых вставка плазмид произошла успешно. Так, если дрожжи оказывались способны расти на среде с антибиотиком, значит, в них также присутствовала система CRISPR-Cas9.

   Исследователи одновременно ввели в клетки дрожжей две вышеописанные плазмиды, предварительно разрезав особым образом — так, чтобы они смогли «найти» друг друга в клетке и соединиться концевыми участками в единую последовательность. Образовавшаяся в результате единая плазмида поддерживалась в клетках дрожжей автономно, то есть без внедрения в хромосому. После того, как доставленная таким образом система CRISPR-Cas9 выполнила свою функцию по редактированию генов, плазмида удалялась. Авторы продемонстрировали эффективность предложенного подхода, успешно отредактировав геномы четырех видов метилотрофных дрожжей: Ogataea polymorpha, O. parapolymorpha, O. haglerorum и Komagataella phaffii.

   «Потенциально наша система может использоваться для изменения одновременно нескольких генов, однако это нам еще предстоит проверить в новых экспериментах. Вместе с тем, уже сейчас у нас есть хороший инструмент для редактирования геномов метилотрофных дрожжей, что расширяет возможности их использования для создания штаммов-продуцентов рекомбинантных белков и применения к ним методов метаболической инженерии», — рассказывает один из авторов исследования, Михаил Агафонов, д.б.н., руководитель группы генной инженерии низших эукариот ФИЦ Биотехнологии РАН.

Источник:

Пресс-служба ФИЦ Биотехнологии РАН 

Комментариев: 0
Вам также может быть интересно
Узнайте о новостях и событиях микробиологии
Первыми получайте новости и информацию о событиях
up