microbius
РОССИЙСКИЙ МИКРОБИОЛОГИЧЕСКИЙ ПОРТАЛ
Поиск
rss

ООО "АЛИФАКС"

ИНН 7718314415

ID 2Vtzqx7tLnC

Реклама

ООО "АЛИФАКС"

ИНН 7718314415

ID 2VtzqwzYS9e

Реклама

ООО "АЛИФАКС"

ИНН 7718314415

ID 2VtzqvtsLHv

Реклама

Сконструирован живой биотерапевтический препарат для профилактики дисбактериоза, вызванного антибиотиками
Сконструирован живой биотерапевтический препарат для профилактики дисбактериоза, вызванного антибиотиками

Автор/авторы:
share
83
backnext
Lactococcus lactis. Фото: sciencephoto.com

Исследователи из Массачусетского технологического института разработали систему защиты микробиома кишечника от воздействия антибиотиков.

   В новом исследовании, опубликованном в журнале Nature Biomedical Engineering, сообщается об успешном применении на мышах "живого биотерапевта" - генномодифицированных бактерий, которые производят фермент, расщепляющий антибиотики в кишечнике. "Эта работа показывает, что синтетическая биология может быть использована для создания нового класса инженерных терапевтических средств для снижения негативного воздействия антибиотиков", - говорит профессор Джеймс Коллинз, старший автор статьи.

   Исследователи работали со штаммом бактерий Lactococcus lactis, который обычно используется в производстве сыра и считается в целом безопасным для потребления человеком. Они генетически сконструировали штамм L. lactis для производства бета-лактамазы, которая расщепляет бета-лактамные антибиотики. Бета-лактамы - это класс широко используемых антибиотиков, включая пенициллин, ампициллин и амоксициллин и на долю которых сегодня приходится около 60% антибиотиков. Авторы исследования надеялись, что введение их модифицированного L. lactis в кишечник создаст своего рода бета-лактамазный щит, который защитит местный микробиом кишечника от повреждения антибиотиками.

   Чтобы проверить это на практике, мышам делали инъекцию ампициллина, а также вводили две пероральные дозы L. lactis. Они показали, что L. lactis успешно вырабатывает бета-лактамазу и разлагает ампициллин в кишечнике мышей, не снижая уровень ампициллина в крови. "Это убедительная демонстрация того, что такой подход может защитить микробиоту кишечника, сохраняя при этом эффективность антибиотика, поскольку вы не изменяете его уровень в крови", - отмечает Коллинз. Исследователи также подтвердили, что у мышей, получавших вместе L. lactis и ампициллин, сохранялось аналогичное бактериальное разнообразие и состав микробиома кишечника. Напротив, у мышей, получавших только ампициллин, наблюдались изменения в микробиоме, включая значительное снижение бактериального разнообразия, которое не восстановилось к концу эксперимента.

   Намеренное внедрение в микробиом кишечника механизма резистентности к антибиотикам, например, выработки бета-лактамазы, может показаться безрассудством. А что если внедренные бактерии используют свое преимущество в устойчивости к антибиотикам, чтобы захватить микробиом, или передадут ген бета-лактамазы другому виду, который в дальнейшем будет создавать проблемы? У исследовательской группы был и на этот случай продуманный план. При создании специального штамма L. lactis исследователи разбили ген бета-лактамазы на две части и поместили каждый фрагмент на отдельный участок ДНК. Это означало, что оба фрагмента с очень малой вероятностью могут быть перенесены вместе в другую бактериальную клетку. Вместо этого L. lactis производит оба фрагмента отдельно и экспортирует их за пределы своих клеток, где оба фрагмента могут вновь собраться и образовать функциональный фермент, который защищает все бактериальное сообщество, а не только самих L. lactis.

   "Сконструированная система экспрессии β-лактамазы не придает клетке-продуценту резистентность к β-лактамам и кодируется с помощью генетически несвязанной двухгенной стратегии биосинтеза, которая не подвержена распространению путем горизонтального переноса генов.", - поясняет Коллинз. В ходе экспериментов на мышах исследователи обнаружили, что гены резистентности к антибиотикам были более распространены в кишечных бактериях мышей, получавших ампициллин без L. lactis, по сравнению с мышами, получавшими данный штамм бактерий. 

   "В мышиной модели парентерального лечения ампициллином, пероральное добавление разработанного живого биотерапевта минимизировало дисбиоз кишечника, не влияя на концентрацию ампициллина в сыворотке, предотвратило обогащение генов резистентности к противомикробным препаратам в микробиоме кишечника и предотвратило потерю устойчивости к колонизации против Clostridioides difficile", - говорит Коллинз.

   Теперь исследовательская группа надеется разработать вариант L. lactis, который можно будет опробовать на людях - сначала на людях с высоким риском развития заболеваний, усугубляемых лечением антибиотиками, таких как инфекция C. difficile. "Если действие антибиотика не является необходимым в кишечнике, то необходимо защитить микробиоту. Это похоже на то, как когда вам делают рентген, вы надеваете свинцовый фартук, чтобы защитить остальное тело от ионизирующего излучения", - отметил Коллинз. "С помощью нашей новой технологии мы можем сделать антибиотики более безопасными, сохранив полезные микробы кишечника и снизив вероятность появления новых резистентных к антибиотикам вариантов".

   Инженерные живые биотерапевтические препараты, которые безопасно разлагают антибиотики в кишечнике, могут представлять собой отличную стратегию для профилактики дисбактериоза и связанных с ним патологий.

Источник:

Cosmos, 12 April 2022

Комментариев: 0
Узнайте о новостях и событиях микробиологии
Первыми получайте новости и информацию о событиях
up